

Inorganic Core/Shell Nanoparticles

General features

• Particle core: Amorphous SiO_2 core (d = 60 – 200 nm)

■ Particle shell: Inorganic crystalline shell (thickness 5 – 10 nm)

Available shell materials: Hydroxylapatite, zinc oxide, zinc

silicate, calcium fluoride, titan dioxide

• Available doping ions: Eu^{3+} , Eu^{2+} , Tb^{3+} , Sm^{3+} , Dy^{3+} , Yb^{3+} ,

Er³⁺, Mn²⁺

Available surface modification: Carboxyl, amine

Method of preparation:

Modified Pechini sol-gel process

For further information please contact: Dr. Sofia Dembski – sofia.dembski@isc.fraunhofer.de phone +49 931 4100 516

Advantages:

- Elegant design strategy: »building blocks« principle
- Defined particle morphology and size
- Narrow particle size distribution
- Adjustable particle properties: composition, size, crystal structure, optical properties, refraction index
- Variable modification of particle surface for their adaptation into different matrix materials
- High particle stability in various environments

(A) Core/shell nanoparticle powders under excitation with UV lamp ($\lambda_{ex} = 254$ nm)

(B) TEM micrograph and dark field image of SiO₂/Zn₂SiO₄:Mn²⁺-core/shell nanoparticles

For further information please contact: Dr. Sofia Dembski – sofia.dembski@isc.fraunhofer.de phone +49 931 4100 516 Fraunhofer Institute for Silicate Research ISC Neunerplatz 2 97082 Würzburg Germany